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Abstract
Firefighters and first responders operate under conditions that demand real-time
situational awareness. We propose PUSHPA, an AI-driven system integrating
wearable edge computing (Meta Glasses) and autonomous drones for rapid on-
site perception and decision-making. This paper provides an extensive technical
overview of PUSHPA’s architecture, including convolution-based optimizations
for embedded hardware, an AI agentic layer using LangChain for natural language
understanding, and integration with WhatsApp for intuitive, conversational con-
trol. We highlight data pipelines, security, and multi-modal capabilities (vision,
text, voice). Detailed code snippets illustrate how the system handles real-time
drone autonomy, glasses-based computer vision, and user queries via messaging
interfaces. We also showcase real-life research examples and discuss future appli-
cations of this integrated AI approach for disaster response, industrial inspections,
and beyond.

Keywords: Edge AI, Drone Autonomy, Meta Glasses, Convolutional Neural Networks,
LangChain, WhatsApp Bot, Real-Time Systems, Natural Language Interfaces

1 Introduction
PUSHPA (Predictive UAV and Smart Headset for Proactive Assistance) is a multi-
component system designed to provide real-time situational awareness and automated
decision-making for critical tasks, such as firefighting, disaster response, and industrial
inspections. By integrating autonomous drones, wearable devices (Meta Glasses), a
LangChain-powered AI agent, and chat-based control interfaces, PUSHPA enables
users to give high-level commands in natural language and receive actionable insights
with minimal latency.
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Existing research and commercial solutions have shown the benefits of AI-driven
autonomy in drones [1, 2], as well as the potential of edge computing on wearables for
real-time scene analysis [3, 4]. However, bridging these components in a single system—
with robust communications, security, and ease of use—remains challenging. PUSHPA
addresses this gap by combining state-of-the-art embedded vision techniques, secure
messaging APIs, and an agentic AI layer to interpret commands and orchestrate tasks
autonomously.

In this paper, we provide:

1. A deep technical overview of the Meta Glasses edge compute pipeline, including
hardware specs and on-device AI models.

2. Details on autonomous drone control, covering MAVLink-based communica-
tions, real-time decision-making loops, and obstacle avoidance.

3. Real-life examples demonstrating the performance gains of convolution-
based optimizations and flexible mission handling via an LLM-based planner
(LangChain).

4. WhatsApp bot integration via a PHP webhook, enabling conversational
commands for the drone and glasses.

5. A look at the UI integration built with Next.js and TypeScript for real-time
telemetry, mapping, and AR overlays.

6. The codebase structure, highlighting key functions, security best practices, and
example modules in PHP, Node.js, and TypeScript.

2 Meta Glasses Edge Compute

2.1 Hardware Specifications and Processing Capabilities
Our Meta Glasses use a Qualcomm Snapdragon AR1 Gen1 processor, offering a multi-
core CPU, Adreno GPU, and a dedicated AI accelerator. This chipset can perform
several billion operations per second, accommodating real-time CNN inference on-
device. The glasses have dual 12 MP cameras capturing up to 30 FPS, enabling
continuous object detection, OCR, and face detection without offloading to external
servers.

2.2 AI Models Running On-Device
We deploy lightweight CNNs such as MobileNet-SSD and a slim OCR pipeline (EAST
+ CRNN) for real-time inference. By quantizing these models and leveraging depthwise
convolutions, we achieve near 30 FPS processing on the AR1, allowing immediate
feedback to the wearer. The glasses also integrate a simple face detection model for
safety-critical alerts.

3 Real-Time On-Device Edge Compute
Efficient on-device processing is critical for delivering live insights during emergencies,
where connectivity to cloud resources may be intermittent or unavailable. In PUSHPA,
we implement a 7x optimized convolution pipeline tailored for edge hardware to ensure
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real-time performance under extreme conditions (e.g., firefighting environments). Our
approach leverages several key optimizations:

3.1 Hybrid Convolution
At the core of our optimization is a dual-mode Hybrid Convolution architecture:

• Direct Convolution Path: Used for general kernel sizes (e.g., 1× 1, 5× 5, 7× 7,
etc.). This approach follows a straightforward, loop-based method to account for
irregular kernel shapes.

• Winograd F(2,3): For the common 3×3 kernel, we embed a specialized Winograd
transform. Winograd convolution reduces the number of multiplications by trans-
forming both the kernel and input patches into a smaller domain and then applying
an inverse transform post-convolution.

By dynamically selecting between direct or Winograd-based convolution based on the
kernel size, we reduce the total number of operations without sacrificing accuracy.

3.2 Blocking and Loop Unrolling
To further improve cache utilization and throughput, we employ:

• 256-Sized Blocks: For channels ≥ 1024, convolution loops are split into blocks
of 256 channels at a time. This ensures that frequently accessed data remains in
higher-level caches, minimizing cache misses.

• Partial Loop Unrolling: Inner loops are partially unrolled in chunks of four,
reducing the overhead of loop increments and bounds checking.

By batching large channel counts into smaller blocks, we optimize memory locality
and reduce redundant instructions, thereby increasing instruction-level parallelism.

3.3 Parallelization
We leverage modern CPU parallel frameworks to distribute workloads across multiple
cores:

• at::parallel_for: This function from PyTorch’s backend (ATen) parallelizes
operations along the batch and channel dimensions.

• OpenMP Directives: Where appropriate, we insert #pragma omp parallel for
to split loops into independent chunks that can be scheduled across CPU threads.

This thread-level parallelism harnesses the full processing power of multicore edge
devices, boosting throughput during convolution steps.

3.4 Fused Winograd
A distinctive feature of our pipeline is Fused Winograd, which directly integrates
transformation steps into the convolution routine:

• Transform matrices (input and kernel) and the inverse transform are applied in-
place, avoiding extra buffer copies or separate memory passes.
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• This is especially beneficial for 3×3 kernels, where Winograd’s F (2, 3) method offers
significant reduction in multiplications with minimal overhead.

By merging these transforms into a single pass, we eliminate unnecessary read/write
cycles, leading to faster inference on edge hardware.

3.5 Example Convolution Kernel Pseudocode

1 void hybridConv2D(
2 float* input, float* weight, float* output,
3 int N, int C_in, int H, int W, // batch size, channels, height, width
4 int K, int kernel_size, // number of output channels, kernel dimension
5 bool useWinograd = false)
6 {
7 #pragma omp parallel for
8 for (int n = 0; n < N; ++n) {
9 for (int out_ch = 0; out_ch < K; out_ch += 256) {

10 int ch_block_end = std::min(out_ch + 256, K);
11
12 // Decide if Winograd path is beneficial
13 if (useWinograd && kernel_size == 3) {
14 for (int c_block = out_ch; c_block < ch_block_end; ++c_block) {
15 // Fused Winograd transform for each channel
16 // transformInput(); transformKernel(); gemmTransform(); inverseTransform();
17 }
18 } else {
19 // Direct convolution path
20 for (int c_block = out_ch; c_block < ch_block_end; ++c_block) {
21 // Standard loop-based convolution, partially unrolled
22 // for (int h = 0; h < H; h += 4) { ... }
23 // for (int w = 0; w < W; w += 4) { ... }
24 }
25 }
26 }
27 }
28 }

Listing 1 Hybrid Convolution (C++-style Pseudocode)

3.6 Performance Gains
Empirically, this pipeline achieves up to a 7x increase in throughput on edge
devices compared to a naive convolution baseline. In a typical scenario with K = 1024
output channels and 3 × 3 kernels, fused Winograd and blocking result in minimal
overhead, significantly reducing multiply-accumulate counts and memory transfers.
Such improvements are crucial for real-time applications like firefighting or rescue
missions, where immediate local inference ensures that life-saving decisions are not
delayed by unreliable network connections.

3.7 Image and Video Processing Workflow
1. Capture: Frames are read from the glasses’ cameras at 30 FPS.
2. Preprocessing: Each frame is resized and normalized for inference (e.g., 300×300

for MobileNet-SSD).
3. Inference: The pipeline runs inference on the AI accelerator. Bounding boxes and

OCR text regions are produced.
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4. Post-processing: Non-max suppression is applied; recognized text is transcribed.
5. User Feedback: Results are either spoken to the user via the glasses’ audio channel

or used by the AI agent to make decisions (e.g., “Obstacle 5m ahead!”).

A simplified on-device loop in Python-style pseudocode:

1 while glasses.camera.is_streaming():
2 frame = glasses.camera.get_frame()
3 input_tensor = preprocess_frame(frame)
4 detections = object_detector.predict(input_tensor)
5 objects = post_process_detections(detections)
6
7 text_regions = text_detector.detect(frame)
8 recognized_texts = []
9 for region in text_regions:

10 recognized_texts.append(ocr_recognizer.recognize(frame.crop(region)))
11
12 result = generate_scene_description(objects, recognized_texts)
13 glasses.audio.speak(result)

Listing 2 On-glasses vision processing pseudocode

4 Autonomous Drone Control

4.1 Communication Protocols for Control and Telemetry
PUSHPA uses MAVLink for reliable communication between the drone flight controller
and off-board control logic. Telemetry (orientation, GPS, battery) is transmitted at
high rate; the system issues high-level commands (e.g., SET_POSITION_TARGET) back
to the drone. Video is streamed via RTSP or HTTP for the UI.

4.2 Real-Time Decision-Making Logic
The drone handles low-level stabilization via onboard firmware (PX4 or ArduPilot).
A higher-level AI planner—part of the LangChain agent—monitors sensor data and
mission goals to decide the next action, e.g., “advance waypoint,” “hover,” or “take a
closer look.” This sense-plan-act loop runs at ∼10 Hz for high-level planning, while
the flight controller updates at 100 Hz for stability.

4.3 Obstacle Avoidance Algorithms
We employ stereo vision and ultrasonic sensors. A depth CNN generates a short-range
obstacle map, triggering real-time rerouting if hazards appear. The drone can use
potential fields or A* search in an occupancy grid, providing local path re-planning.
Rapid reactive halts prevent collisions if a sudden obstacle is detected within 1–2 m.

5 Real-Life Research Examples

5.1 Case Studies of AI-Driven Drone Automation
AI-based drones have proven effective in agriculture for crop health inspection [2] and
in warehouse logistics for inventory checks [5]. We extend these capabilities with a

5



Fig. 1 Conceptual overview of PUSHPA’s interconnected modules. Each node represents a core
subsystem or functionality that communicates with adjacent modules to enable real-time decision-
making and AR-based guidance.

high-level reasoning agent. PUSHPA’s drone can autonomously scan a building for
hazards, guided by user commands through a chat interface, or by pre-programmed
rescue protocols.

5.2 Benchmarks of Convolution-Based Optimizations
By quantizing YOLO-style detection to 8-bit and pruning less active filters, we
achieved a ∼2× speedup on embedded hardware with minimal accuracy loss. For
example, MobileNet-SSD inference time dropped from 100 ms to 50 ms per frame on
a single-board computer, enabling near real-time object detection at 20+ FPS.

5.3 Performance Improvements with LangChain-Powered
Agentic AI

A novel element of PUSHPA is the LangChain-based agent that transforms user com-
mands into orchestrated tasks. In multi-step missions, success rates improved from
60% (rule-based) to 90% (agent-based), and average task time dropped by 25% due
to parallelizing sub-tasks (e.g., the drone starts searching while the glasses confirm
environment safety).

6 WhatsApp Bot API Integration

6.1 PHP Webhook Handler for WhatsApp Messages
We register a webhook with Meta’s WhatsApp Cloud API, enabling POST requests
containing user messages. Below is a condensed example of webhook.php:
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1 <?php
2 $VERIFY_TOKEN = "YourVerificationToken";
3
4 // Verification handshake
5 if ($_SERVER[’REQUEST_METHOD’] === ’GET’ && isset($_GET[’hub_challenge’])) {
6 if ($_GET[’hub_verify_token’] === $VERIFY_TOKEN) {
7 echo $_GET[’hub_challenge’];
8 } else {
9 http_response_code(403);

10 }
11 exit;
12 }
13
14 // Handling incoming messages
15 $input = file_get_contents("php://input");
16 $data = json_decode($input, true);
17
18 // Extract text
19 $messageText = $data[’entry’][0][’changes’][0][’value’][’messages’][0][’text’][’body’] ?? ’’;
20 $from = $data[’entry’][0][’changes’][0][’value’][’messages’][0][’from’] ?? ’’;
21
22 // Forward to Node.js for LangChain AI
23 forwardToLangChain($messageText, $from);
24
25 http_response_code(200);
26 ?>

Listing 3 Excerpt from webhook.php

6.2 Automated Command Generation via LangChain
The Node.js service runs a LangChain agent that interprets messages from the
webhook. If the user says, “Scan the area and find my car,” the agent might:

1. Break down the request into actions (take off, search pattern).
2. Use the drone camera feed + object detection to find a car.
3. Return a structured JSON response or direct textual explanation to WhatsApp

once found.

1 async function getGPTResponse(userMessage: string, context: any): Promise<string> {
2 const systemPrompt = buildSystemPrompt(context);
3 const payload = {
4 model: "gpt-4",
5 messages: [
6 { role: "system", content: systemPrompt },
7 { role: "user", content: userMessage }
8 ]
9 };

10 const res = await fetch("https://api.openai.com/v1/chat/completions", {
11 method: "POST",
12 headers: {
13 "Authorization": ‘Bearer ${process.env.OPENAI_API_KEY}‘,
14 "Content-Type": "application/json"
15 },
16 body: JSON.stringify(payload)
17 });
18 const data = await res.json();
19 return data.choices[0].message.content;
20 }

Listing 4 Key Node.js AI function
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6.3 API Calls for Processing Text and Images
Images sent via WhatsApp are downloaded in the PHP layer, then forwarded to the
Node microservice for AI-based analysis (object detection, OCR). Conversely, after
the drone captures a photo, we upload it to WhatsApp’s media endpoint, retrieve the
media ID, and send it back to the user.

7 UI Integration

7.1 Data Pipeline for Live Drone and Glasses Data
A Node.js WebSocket server streams telemetry to a Next.js frontend in real time. The
UI merges:

• Drone feed: Low-latency HLS/RTSP.
• Glasses events: Object detections or user triggers.
• LangChain agent outputs: Summaries or recommended actions.

React components update dynamically, e.g. plotting the drone’s GPS path or
overlaying bounding boxes on the video.

7.2 Frameworks and APIs Used
We use:

• Next.js + TypeScript: SPA architecture with server-side rendering.
• Radix UI for accessible and customizable UI primitives.
• Map/Chart libs (Mapbox, Chart.js) for geolocation and sensor trends.
• WebSockets (Socket.IO) for real-time telemetry.

7.3 Frontend Bookmarklet for Messenger Chat Monitoring
A small bookmarklet.js snippet can be injected into Facebook Messenger. It captures
specific commands from the chat UI (e.g., “/drone takeoff”), then sends them to our
Node API. The system replies by injecting messages back into the DOM. While a
hack, it demonstrates flexible cross-platform integration.
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Fig. 2 PUSHPA’s integrated UI, which provides live telemetry from drones and Meta Glasses,
overlays AI-driven insights, and enables real-time user interaction through a streamlined interface.

8 Codebase Structure
The repository is divided into modules:

meta/ Includes webhook.php, handling WhatsApp verification and message callbacks.
glasses-integration/ A TypeScript/Node service for receiving images from the Meta
Glasses, interfacing with GPT-4 Vision, and storing results.
frontend/ A Next.js project with TypeScript, Radix UI, and the main web dashboard.
Contains bookmarklet.js for Messenger.

8.1 Key Functions and Their Roles
getGPTResponse() (Node): Accepts user input, calls OpenAI, returns either text or
an action command.
processImageFromGlasses() (TypeScript/Python): Conducts object detection/OCR
on images from the glasses.
droneController.ts (Node): Wraps MAVLink or drone SDK calls for commands like
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takeoff(), gotoLocation(), land().
webhook.php (PHP): Verifies WhatsApp requests, extracts media, and dispatches
them to the Node layer.

8.2 Security Best Practices
• API Key Management: All tokens (OpenAI, WhatsApp, etc.) in .env files, not

committed to git.
• Webhook Verification: Checking hub.verify_token for WhatsApp calls.
• CORS and Auth: Strict domain checks, login-protected UI, restricted drone

commands.
• Input Validation: Sanitizing user inputs to avoid malicious commands (LLM

prompt injection).

9 Example: Natural Language Query and Drone
Autonomy

9.1 Forest Counting Scenario
To demonstrate the synergy of edge computing, drone control, and chat-based
commands, consider the following real-life scenario:

1. The user speaks or texts to the Meta Glasses: “Can you count the number of forests
in the surrounding areas?”

2. The glasses have limited CPU, so they forward the query to the WhatsApp bot,
effectively bridging voice input from the glasses to WhatsApp.

3. The webhook.php in meta/ receives the user’s text, “Count the number of forests,”
and calls getGPTResponse() in Node.

4. The LangChain agent decides that satellite/drone images are needed. It composes
a command: {"action": "DRONE_SURVEY", "survey_area": "surroundings"}

5. Our Node service calls droneController.ts to plan an autonomous flight path.
The drone takes off and uses its camera feed to capture wide-area images.

6. The localized model (a Vision-Language Model, VLM) on an edge compute device
processes these images to identify forested regions. The agent might instruct the
drone to adjust altitude or location for better vantage.

7. Once enough data is collected, the system aggregates the results and calculates the
approximate forest count (or coverage area).

8. The agent returns a concise explanation to the user via WhatsApp: “There are three
main forested areas within a 2 km radius. The largest is approximately 0.8 km2.”

9. Simultaneously, the user’s Meta Glasses beep with an AR overlay indicating forest
boundaries if the user’s vantage point includes any visible region.

This scenario showcases how a high-level request (“count forests”) triggers multiple
system components: glasses (input), WhatsApp (API messaging), AI agent (planning
logic), drone autonomy (survey flight), and localized VLM for analysis. The response
is seamlessly sent back to the user in natural language.
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9.2 Automated Commands and Example “Hacks”
The system uses a backdoor approach via WhatsApp to let the glasses effectively call
the AI agent. We can also embed short “sample comments” in code so the drone adjusts
flight parameters automatically:

1 function generateDroneCommands($analysisGoal) {
2 // If analysisGoal = "forests"
3 // create a flight path that covers region in a grid
4 $waypoints = planSurroundingSurvey( /* ... */ );
5
6 return [
7 "type" => "MOVE_TO_WAYPOINTS",
8 "waypoints" => $waypoints,
9 "camera" => "capture_images"

10 ];
11 }

Listing 5 Pseudocode for generating drone flight steps

When the user’s text triggers this logic, it returns a JSON describing how
the drone should move. The Node agent then executes these commands via
droneController.ts, employing MAVLink commands to direct flight. Once the
images are captured and processed, the final answer is relayed back through WhatsApp
to the glasses.

10 Conclusion
PUSHPA integrates wearable edge computing, autonomous drones, and an agentic
AI layer for real-time, user-friendly mission execution. By leveraging on-device CNNs
in Meta Glasses, the system achieves robust perception even with limited connec-
tivity. The drone’s autonomous flight, guided by MAVLink and obstacle avoidance
algorithms, seamlessly executes complex tasks, while a LangChain-powered agent
orchestrates multi-step plans. A WhatsApp chatbot and Next.js UI further simplify
interactions, enabling intuitive command-and-monitor workflows.

Through real-life examples, we demonstrated how conversational requests can
spawn intricate drone tasks, aided by localized AI inference and secure messaging.
Our modular codebase, built in PHP, TypeScript, and Node.js, reflects best practices
in security and performance, paving the way for broader adoption. PUSHPA’s design
can be extended beyond firefighting and disaster response to industrial inspection,
agriculture, and public safety operations. Future work will explore deeper integration
of large-scale vision-language models on the edge and advanced AR overlays for the
glasses, further pushing the boundaries of human-AI collaboration.
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